PI2103 气体浓度分析仪
PI5310 气体浓度分析仪
SI2205 气体浓度分析仪
SI2108 气体浓度分析仪
SI2104 气体浓度分析仪
G2509 气体浓度分析仪
G2207-i 同位素与气体浓度分析仪
Picarro G2207-i 气体浓度与同位素分析仪将高精度和低漂移 O2 浓度测量与环境空气中的 δ18O 分析相结合,使其成为用于包括大气中氧监控等具有挑战性应用的理想选择,能够确定碳循环中所涉及的生物地球化学过程。
Caddy™ 连续流接口
L2130-i 同位素与气体浓度分析仪
Picarro L2130-i 同位素分析仪可实现水稳定同位素的高质量测量,适用于古气候学、水文学和海洋学等严苛应用。运用各种 Picarro 外围设备,可以对取自液体、气体和固体的水样品进行 δ18O 和 δD 高精度测量。
G2210-i 同位素分析仪
Picarro G2210-i 同位素分析仪专为满足科学界实施实时甲烷排放源归属的需求而设计。高精度测量大气中甲烷和乙烷的功能与二氧化碳和水汽测量相结合,为用户提供一种用来测量并确定垃圾填埋场、压裂站和废弃油气井等甲烷排放源的独特工具。
G2508 气体浓度分析仪
Picarro G2508 气体浓度分析仪可同步测量氧化亚氮(N2O)、甲烷(CH4)、二氧化碳(CO2)、氨(NH3)和水汽 (H2O),灵敏度为十亿分率(ppb),针对农业与土壤科学、生态学和量化排放应用所产生的漂移可忽略不计。
G2308 气体浓度分析仪
Picarro G2308 气体浓度分析仪可同步精确测量氧化亚氮(N2O)、灵敏度为十亿分率(ppb)的甲烷(CH4)和灵敏度为百万分率(ppm)的水汽(H2O),针对大气科学、空气质量和量化排放应用所产生的漂移可忽略不计。
G2401 气体浓度分析仪
Picarro G2401 气体浓度分析仪可同步精确测量一氧化碳(CO)、二氧化碳(CO2)、灵敏度为十亿分率 (ppb)的甲烷(CH4)和灵敏度为百万分率 (ppm) 的水汽(H2O),针对大气科学、空气质量和量化排放应用所产生的漂移可忽略不计。
G2203 气体浓度分析仪
Picarro G2203 气体浓度分析仪可同步精确测量甲烷(CH4)和乙炔(C2H2),灵敏度为十亿分率(ppb),通过使用 C2H2 示踪剂来测量可量化的排放率,测量垃圾填埋场或其它甲烷源中的逸散性 CH4 排放时的漂移可忽略不计。
G2311-f EC 通量气体浓度分析仪
Picarro G2311-f 通量气体浓度分析仪可在 10 Hz 下针对涡度相关方法、梯度方法和涡旋累积法,同步精确测量二氧化碳 (CO2)、甲烷 (CH4) 和水汽 (H2O) 。
G2401-m 航空专用气体浓度分析仪
Picarro G2401-m 气体浓度分析仪可同步精确测量一氧化碳 (CO)、二氧化碳 (CO2)、灵敏度为十亿分率 (ppb) 的甲烷 (CH4) 和灵敏度为百万分率 (ppm) 的水汽 (H2O) ,针对大气科学、空气质量和量化排放应用所产生的漂移可忽略不计。
G2301 气体浓度分析仪
Picarro G2301 气体浓度分析仪可同步精确测量二氧化碳(CO2)、灵敏度为十亿分率(ppb)的甲烷(CH4)和灵敏度为百万分率(ppm)的水汽(H2O),针对大气科学、空气质量和量化排放应用所产生的漂移可忽略不计。
G2204 气体浓度分析仪
Picarro G2204 气体浓度分析仪可同步精确测量甲烷(CH4)和硫化氢(H2S),灵敏度为十亿分率(ppb),针对垃圾填埋场、炼油厂、造纸厂或工业厂房的排放测量所产生的漂移可忽略不计。
G2106 气体浓度分析仪
Picarro G2106 气体浓度分析仪可精确实时测量乙烯(C2H4) 和水汽(H2O),灵敏度为十亿分率(ppb),针对农业与土壤科学应用所产生的漂移可忽略不计。
PI2114 气体浓度分析仪
G2205 气体浓度分析仪
Picarro G2205 气体浓度分析仪可精确实时测量氟化氢(HF)和水汽(H2O),灵敏度为万亿分率(ppt),针对大气科学和空气质量应用所产生的漂移可忽略不计。
G2103 气体浓度分析仪
Picarro G2103 气体浓度分析仪可精确实时测量氨 (NH3) 和水汽 (H2O) 。这款分析仪在关键的气体通路中安装了涂层部件,减弱了 NH3 分子粘附到气体通路表面上的倾向,继而改善测量响应时间。
G5131-i 同位素与气体浓度分析仪
Picarro G5131-i 同位素与气体浓度分析仪可同步测量 N2O 中的位点特异性及批量 δ15N 和 δ18O。它是一项理想的解决方案,适用于在现场实时地或在实验室中通过收集样品来识别和测量 N2O 排放源。
G2131-i 同位素与气体浓度分析仪
Picarro G2131-i 同位素与气体浓度分析仪能够在各种应用下进行灵活的测量,从大气和海洋科学研究到食品与饮料的来源与真实性无不涵盖其中。这款分析仪能够测量二氧化碳中的 δ13C,精度小于 0.1 ‰。这款分析仪能够以十亿分之二百(200 ppb)和十亿分之五十 (50 ppb) 的精度同步分别测量二氧化碳(CO2)和甲烷(CH4)的气体浓度。以百万分率(ppm)的精度来测量水汽(H2O),从而以干气摩尔分数来校正和报告 CO2 和 CH4。
In the second part of the blog post of his Chilean research diary, Prof. Joe Galewsky will focus on the details and significance of his research in Chile, an account that is captivating by all means.
哥斯达黎加国立大学的 Ricardo Sánchez-Murillo 预测,即使是在中美洲等全球最潮湿的地区也会面临水资源挑战。利用他在爱达荷大学莫斯科校区研习期间获得的经验,他打算通过研究哥斯达黎加鲜为人知的供水系统来寻找解决方案。.
Few scientific meetings match the level of organization and attendee engagement as does this Global Monitoring Annual Conference (GMAC). This past May, GMD celebrated its 40th year of these meetings in Boulder, CO. One thing many people may not know about this year’s meeting is that it was funded entirely by private donations, which were primarily from individuals. In the following article, Picarro’s greenhouse gas product manager, Gloria Jacobson, checks in with GMD director, Jim Butler, after the event.
GRAZ, AUSTRIA — We used the Picarro isotopic water analyzer in a project financed by the Austrian Federal Ministry for Transport, Innovation and Technology. High in the Austrian Alps our team (from the Joanneum Research Institute of Water Resources Management) installed a Picarro stable isotope analyzer at one of the largest karst springs in the country.
When I joined Picarro at the start of September in 2009, Cavity Ring-Down Spectroscopy technology for isotope analysis had only just been created. In short order CRDS was validated by researchers whose laboratories specialized in using isotope ratio mass spectrometers (IRMS), devices which were previously considered the state of the art.
In a week when heat waves are sweeping the country, a post about green roofs seems appropriate. Environmentalists have long espoused putting plants on top of buildings as a way to improve air quality in cities and reduce the urban island heat effect. Sounds nice, but what are the real impacts of green roofs? Will they reduce runoff water into storm drains? Will they clean the runoff water? Will they cool the city? And will green roofs absorb or emit methane and other greenhouse gases.
As I write this, I’m sitting on a ski-equipped LC-130 Hercules cargo plane from the New York Air National Guard’s 109th Airlift Wing, flying over Greenland, having just taken off from the NEEM camp at 77°N latitude where the sun is up 24 hours a day.
I've got two simple yet evocative phrases for you. Wing pods. Unmanned Aerial Vehicles. Excited? We are. During late June, a team of top scientists from the NASA Ames Research Center deployed three Picarro analyzers as part of the The Railroad Valley Vicarious Calibration Campaign, a collaboration between the Japan Aerospace Exploration Agency (JAXA), and NASA's Jet Propulsion Laboratory (JPL), Pasadena, Calif. One of the analyzers was deployed in a wing pod of an Alpha jet which flew up to altitudes of 25,000 feet. Another was deployed in the nose cone of an Unmanned Aerial Vehicle
Climate scientists can be divided into two large interactive groups: Experimentalists, who go out into the world and collect climate data (e.g., levels of carbon dioxide, methane concentration, seasonal temperature, snowfall rates, etc.); and Modelers, those who build computer simulations based on that data (called “climate models” by those in the know) to estimate how climate variables affect one another (e.g., does increasing CO2 increase temperature enough to melt polar ice caps that will raise sea levels so high that Miami will be the next Atlantis?).