Skip to main content
Peer Reviewed Literature
Authors

S. Newman, S. Jeong, M. L. Fischer, X. Xu, C. L. Haman, B. Lefer, S. Alvarez, B. Rappenglueck, E. A. Kort5, A. E. Andrews, J. Peischl, K. R. Gurney, C. E. Miller, and Y. L. Yung

Presented at

Atmospheric Chemistry and Physics http://dx.doi.org/10.5194/acpd-12-5771-2012

Abstract

Attributing observed CO2 variations to human or natural cause is critical to deducing and tracking emissions from observations. We have used in situ CO2, CO, and planetary boundary layer height (PBLH) measurements recorded during the CalNex-LA (CARB et al., 2008) ground campaign of 15 May–15 June 2010, in Pasadena, CA, to deduce the diurnally varying anthropogenic component of observed CO2 in the megacity of Los Angeles (LA). This affordable and simple technique, validated by carbon isotope observations, is shown to robustly attribute observed CO2 variation to anthropogenic or biogenic origin. During CalNex-LA, local fossil fuel combustion contributed up to ~50 % of the observed CO2 enhancement overnight, and ~100 % during midday. This suggests midday column observations over LA, such as those made by satellites relying on reflected sunlight, can be used to track anthropogenic emissions.